

Optimal Sequence Alignment

Overview

- The alignment problem
- The dynamic programming solution
- Pairwise alignment: exact global and local solutions
- Multiple alignment and the cost of perfection

Recap: protein scoring

$$\left(\frac{C_{a,b}}{f(a)f(b)} \right)$$

C matrix – scaled frequencies of change from amino acid a to amino acid b
(based on observed changes in some set)

Expectation based solely on frequencies of amino acids (changes not favoured / disfavoured)

Better than random: ratio > 1

Random: ratio $= 1$

Worse than random: ratio < 1

log transformation

$$D_{a,b} = S \cdot \log \left(\frac{C_{a,b}}{f(a)f(b)} \right)$$

Magic log

Better than random: $D_{a,b} > 0$

Random: $D_{a,b} = 0$

Worse than random: $D_{a,b} < 0$

	C	S	T	P	A	G	N	D	E	O	H	R	K	M	I	L	V	F	Y	W	
C	9																			C	
S	-1	4																			S
T	-1	1	5																		T
P	-3	-1	-1	7																	P
A	0	1	0	-1	4																A
G	-3	0	-2	-2	0	6															G
N	-3	1	0	-2	-2	0	6														N
D	-3	0	-1	-1	-2	-1	1	6													D
E	-4	0	-1	-1	-1	-2	0	2	5												E
Q	-3	0	-1	-1	-1	-2	0	0	2	5											Q
H	-2	-1	-2	-2	-2	-2	1	-1	0	0	8										H
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5									R
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5								K
M	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5							M
I	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4					I	
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4				L	
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	-3	-2	1	3	1	4			V	
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6		F	
Y	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	Y	
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11	W
	C	S	T	P	A	G	N	D	E	Q	H	R	K	M	I	L	V	F	Y	W	

PAM150 matrix (S = 2, log base 2)
Half-bits

DNA matrix

Something like this usually works:

	A	G	C	T
A	1	-1	-1	-1
G	-1	1	-1	-1
C	-1	-1	1	-1
T	-1	-1	-1	1

Or this:

	A	G	C	T
A	1	0.5	-1	-1
G	0.5	1	-1	-1
C	-1	-1	1	0.5
T	-1	-1	0.5	1

Back to the alignment problem

Given a scoring scheme...

and a set of homologous sequences S ...

introduce gaps if necessary to generate an alignment that optimizes the score

So let's make some alignments!

Sequence S_1 : length m

Sequence S_2 : length n

So let's make some alignments!

Sequence S_1 : length m

Sequence S_2 : length n

In total, there are $\binom{n+m}{m}$ possible alignments of these sequences

$$n = m = 2:$$
$$4!/2!2! = 6 \text{ possibilities}$$

$n = m = 10$: 184,756 possible alignments

Alignment of 2 sequences, each 100 amino acids in length:

= $9.05485147 \times 10^{58}$ possibilities

Brute force is *not* going to work here...

Scaling of algorithms: Big-O Notation

What rate do resources (time, memory) increase as the input increases?

Asymptotic: upper bound on growth as input tends to infinity

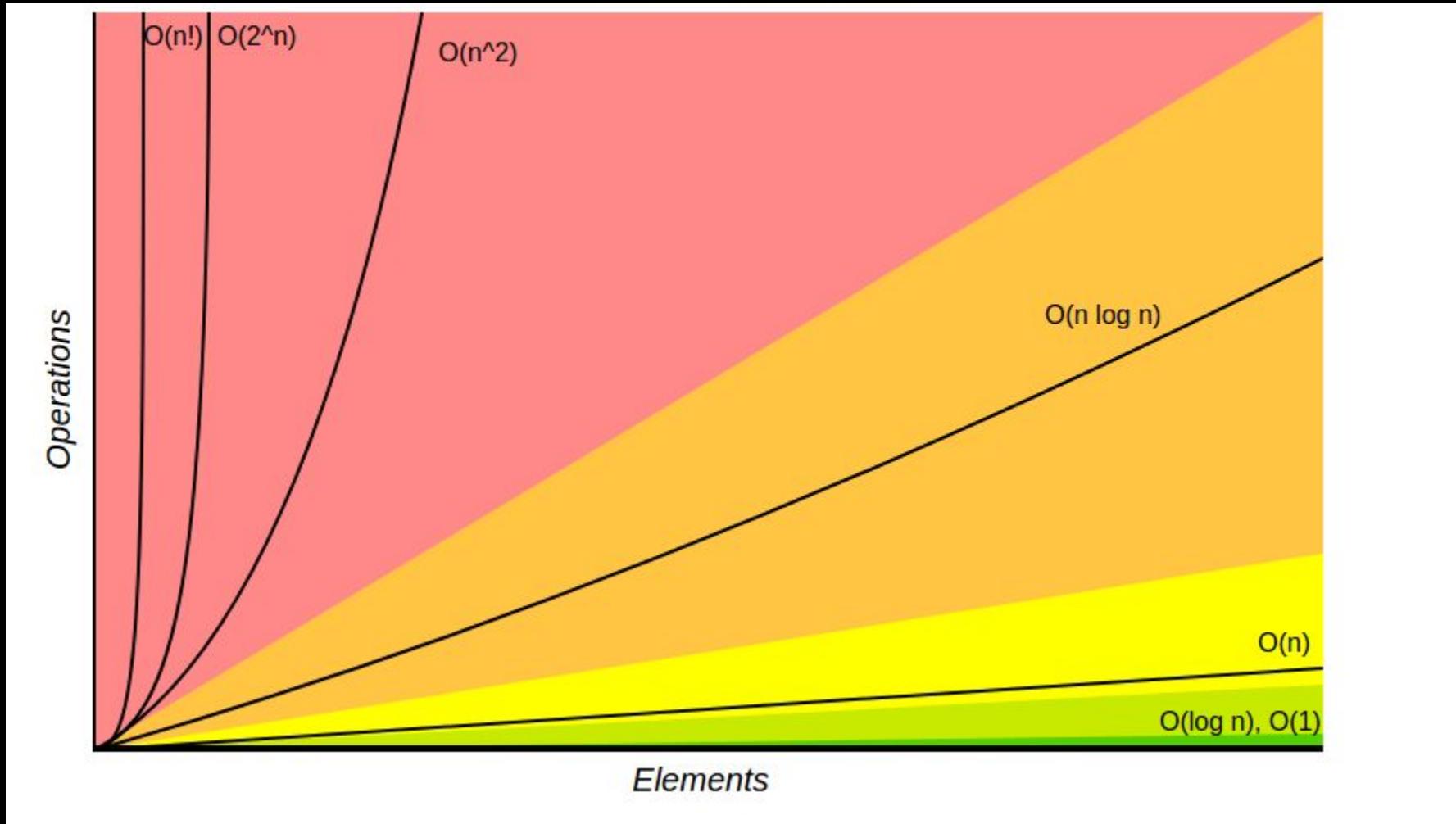
Keep only dominant term:

$$3n^2 + 7n + 42 \text{ is } O(n^2)$$

Brute-force sequence alignment:

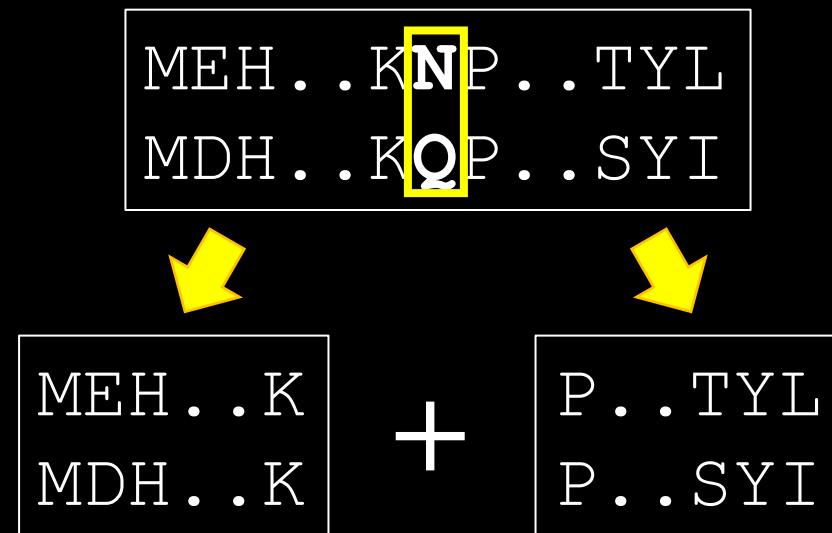
$$2n \text{ choose } n \sim O(4^n)$$

Big O complexity



The Key to Alignment

If we were given a **point X** within an optimal alignment of S_1 and S_2 , we could **split on X** and solve each problem independently



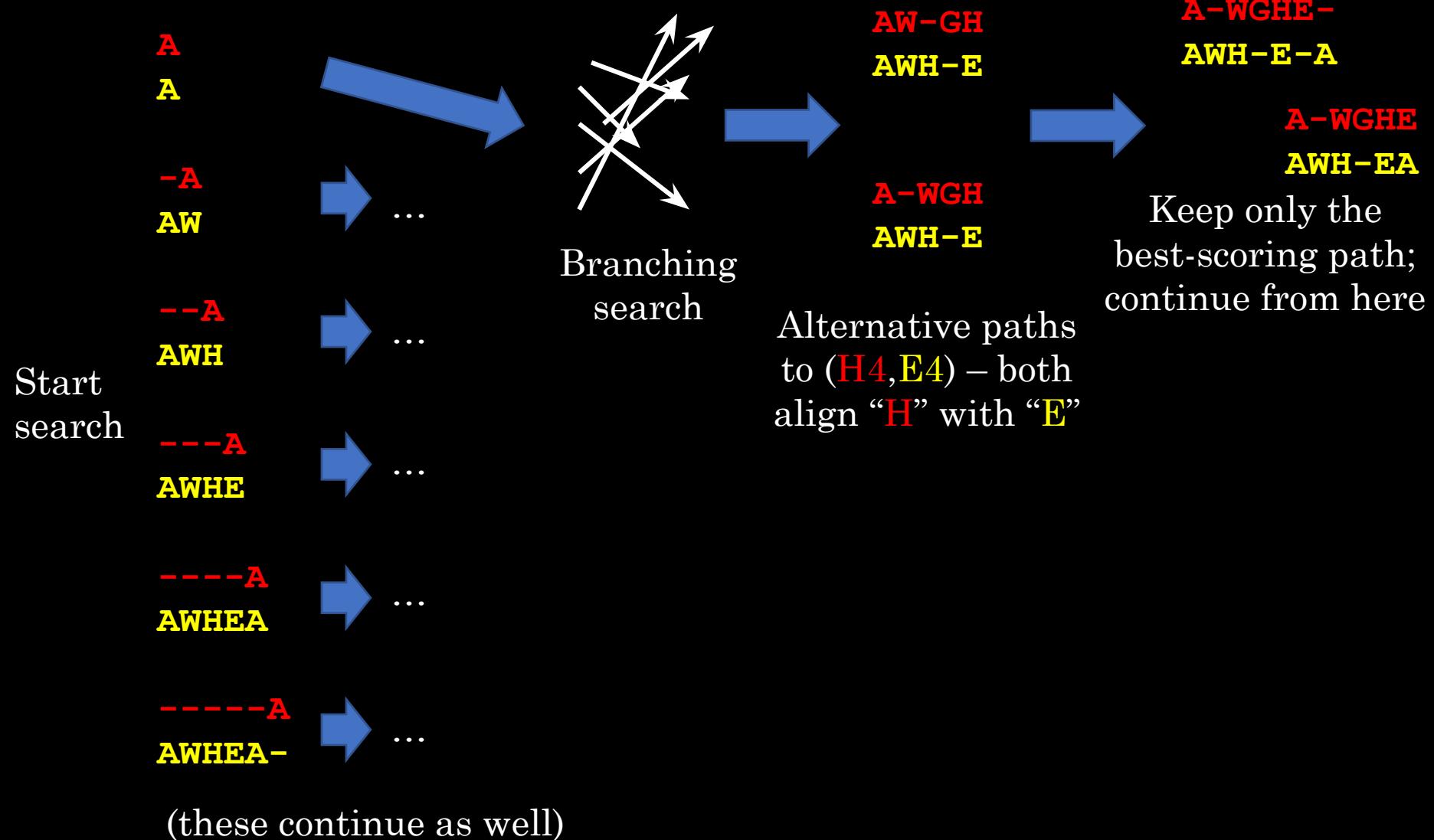
But we **don't know** any X, so divide and conquer isn't going to work

However...

In searching for the best alignment:

- Start at the beginning of the sequences and consider **every** possible X
 - BUT -
- Store only the **best path** (series of matches and gaps) that leads us to X

Consider an alignment search for **AWGHE** vs **AWHEA**:

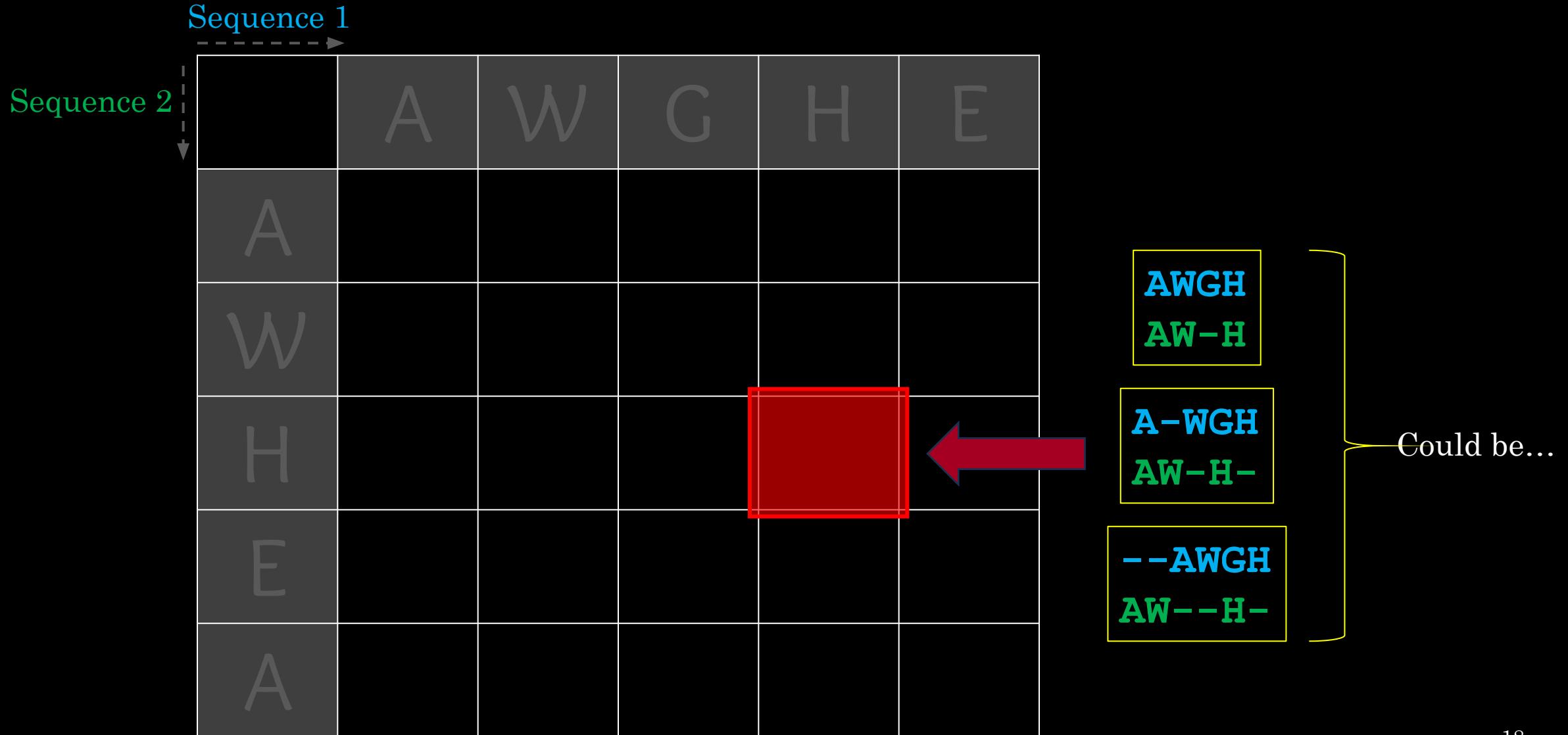


= Dynamic Programming

Consider an alignment of AWGHE vs AWHEA:

		Sequence 1				
		A	W	G	H	E
Sequence 2	A					
	W					
	H					
	E					
	A					

Each cell in the grid represents a point in the alignment where the corresponding residues have been added to the alignment



Determine the best score for every possible X from the two sequences

AWGHE vs. AWHEA		A	W	G	H	E
A		Best →(A,A)				
W						
H					Best → (H,H)	
E						
A						Best → (A,E)

Filling the matrix

We need our substitution matrix S and gap penalty scheme G

(we'll start with a linear gap penalty $G = -gd$)

For each possible X , consider the three immediate precursors

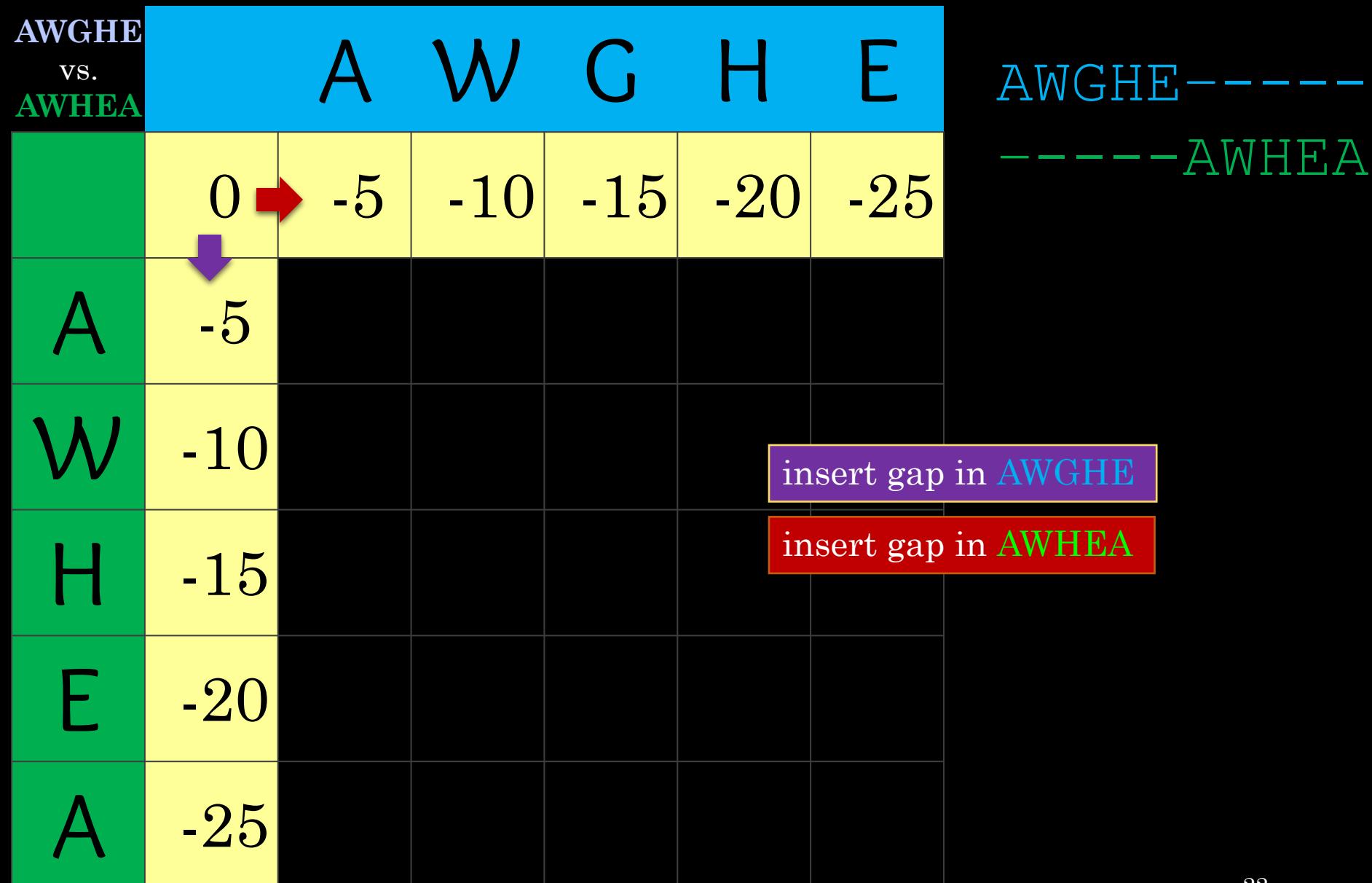
Upper left-hand corner: set to 0

S = PAM250
g = 5

AWGHE vs. AWHEA		A	W	G	H	E
	0					
A						
W						
H						
E						
A						

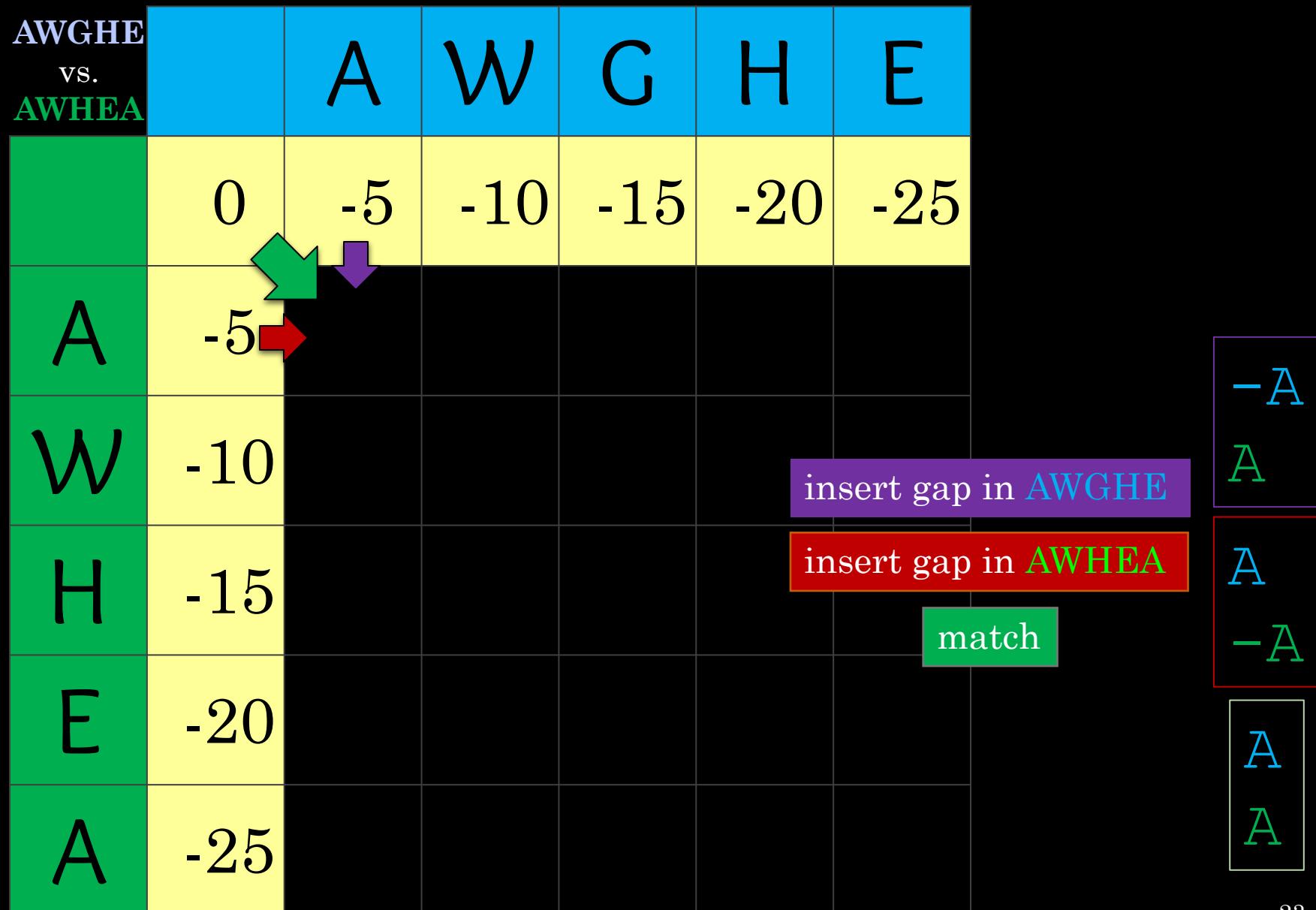
First row / columns: runs of initial gaps

$S = \text{PAM250}$
 $g = 5$
 -----AWGHE
 AWHEA-----



Filling (A,A): What is the best path to get there?

$S = \text{PAM250}$
 $g = 5$



Choosing the best path to (A,A)

AWGHE vs. AWHEA		A	W	G	H	E	
S(A,A) = 2	A	0	-5	-10	-15	-20	-25
Therefore:	W	-5	2				
Insert -10	H	-10					
Insert -10	E	-15					
Match 2	A	-20					
		-25					

General form: best path to any matrix cell

AWGHE vs. AWHEA		A	W	G	H	E
A	0	-5	-10	-15	-20	-25
W	-5					
H	-10		F(2,2)	F(2,3)		
E	-15		F(3,2)	F(3,3)	= ?	
A	-20		F(2,2) + S(G,H)		match	
	-25		F(2,3) - d		insert gap in AWGHE	
$F(3,3) = \max$		F(3,2) - d		insert gap in AWHEA		

Remember
paths INTO
(not out of)
each cell

AWGHE vs. AWHEA		A	W	G	H	E
A	0	-5	-10	-15	-20	-25
	-5	2	3	8	13	18
	-10	3	19	14	9	4
	-15	8	14	17	20	15
	-20	13	9	14	18	24
	-25	18	4	10	13	19

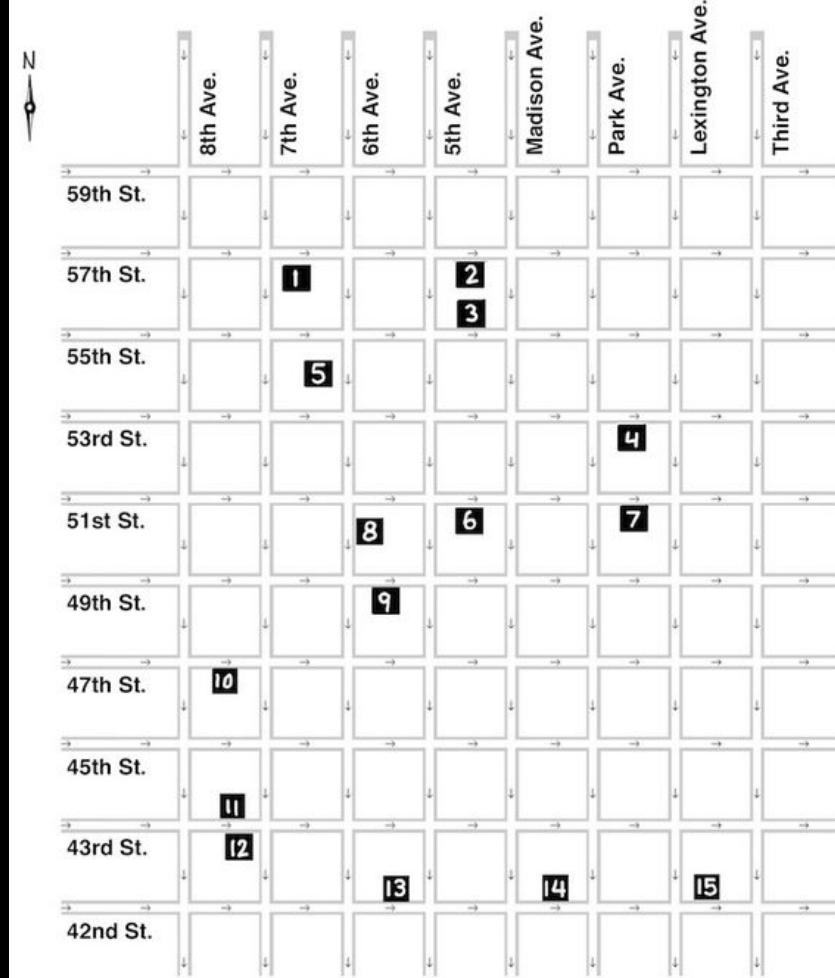
Global Exact Alignment: Needleman-Wunsch

Since we have retained the best path to each $F(x,y)$ in the matrix, we can trace back from the endpoint $F(m,n)$ to the origin and retrieve the optimal alignment path

Traceback for the optimal alignment

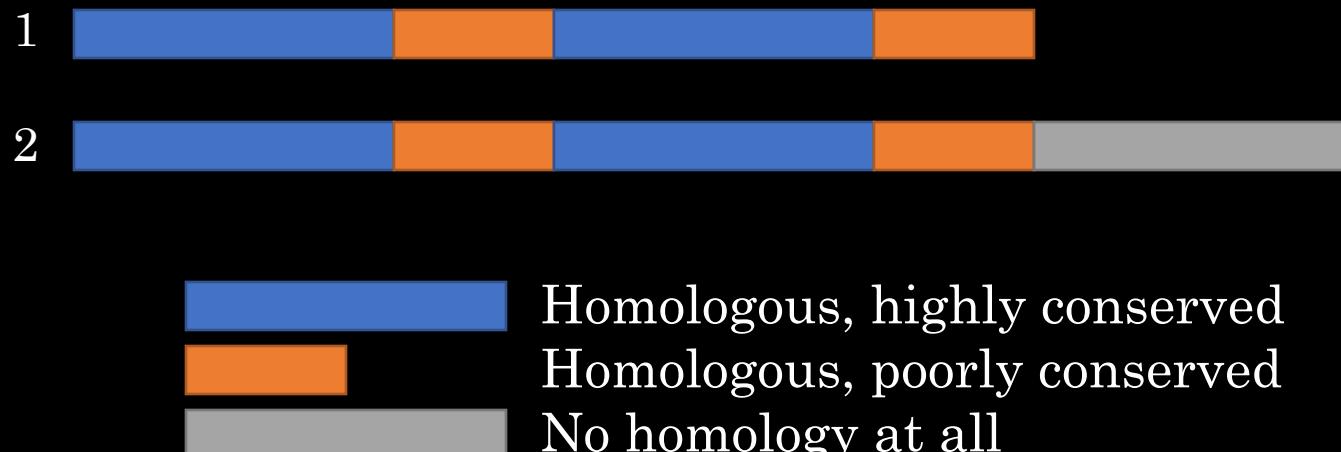
AWGHE vs. AWHEA		A	W	G	H	E	
AWGHE- AW-HEA	A	0	-5	-10	-15	-20	-25
	W	-5	2	-3	-8	-13	-18
	H	-10	-3	19	14	9	4
	E	-15	-8	14	17	20	15
	A	-20	-13	9	14	18	24
	A	-25	-18	4	10	13	19

Same problem as finding longest path through directed acyclic graph



Local Exact Alignment: Smith-Waterman

- Only return ‘good’ sub-alignments of the whole problem
- Useful, for instance, when



One more rule for local alignment

AWGHE vs. AWHEA	A	W	G	H	E
A	0	0	0	0	0
W	0		$F(2,2)$	$F(2,3)$	
H	0		$F(3,2)$	$F(3,3)$	$= ?$
E	$F(3,3) = \max$	$\begin{cases} 0 & \text{match} \\ F(2,2) + S(G, H) \\ F(2,3) - d & \text{insert gap in AWGHE} \\ F(3,2) - d & \text{insert gap in AWHEA} \\ 0 & \text{Nothing is } > 0 \end{cases}$			
A					

The Needleman-Wunsch Matrix, Again

AWGHE vs. AWHEA		A	W	G	H	E	
AWGHE- AW-HEA	A	0	-5	-10	-15	-20	-25
	W	-5	2 →	-3 →	-8 →	-13 →	-18
	H	-10	-3	19 →	14 →	9 →	4
	E	-15	-8	14	17	20 →	15
	A	-20	-13	9	14	18	24
	A	-25	-18	4	10	13	19

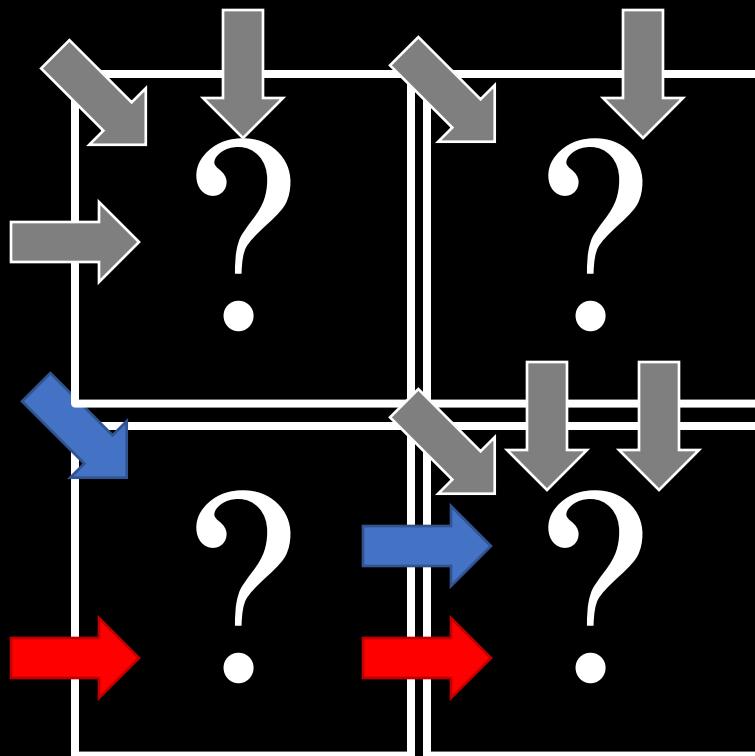
The Smith-Waterman matrix

Slightly modified
(non-trivial) S-W
example

Find the **largest**
value in the matrix,
and trace back from
there to 0

		A	W	G	H	E
		0	0	0	0	0
		0	2	0	1	0
A		0	0	2	0	0
Y		0	0	2	0	0
H		0	0	0	0	6
H		0	0	0	0	1
E		0	0	0	1	10
A		0	2	0	1	5

Affine Gap Penalties



Opening a new gap (cost = d)

Extending a gap (cost = e)

A horizontal move now has two possible costs; we need to consider **both** alternatives

(and therefore store the best scores for each box given horizontal, vertical, or diagonal entry)

Significance of S-W Alignments

Permutation test: Randomize the alignment n times, compute mean and standard deviation

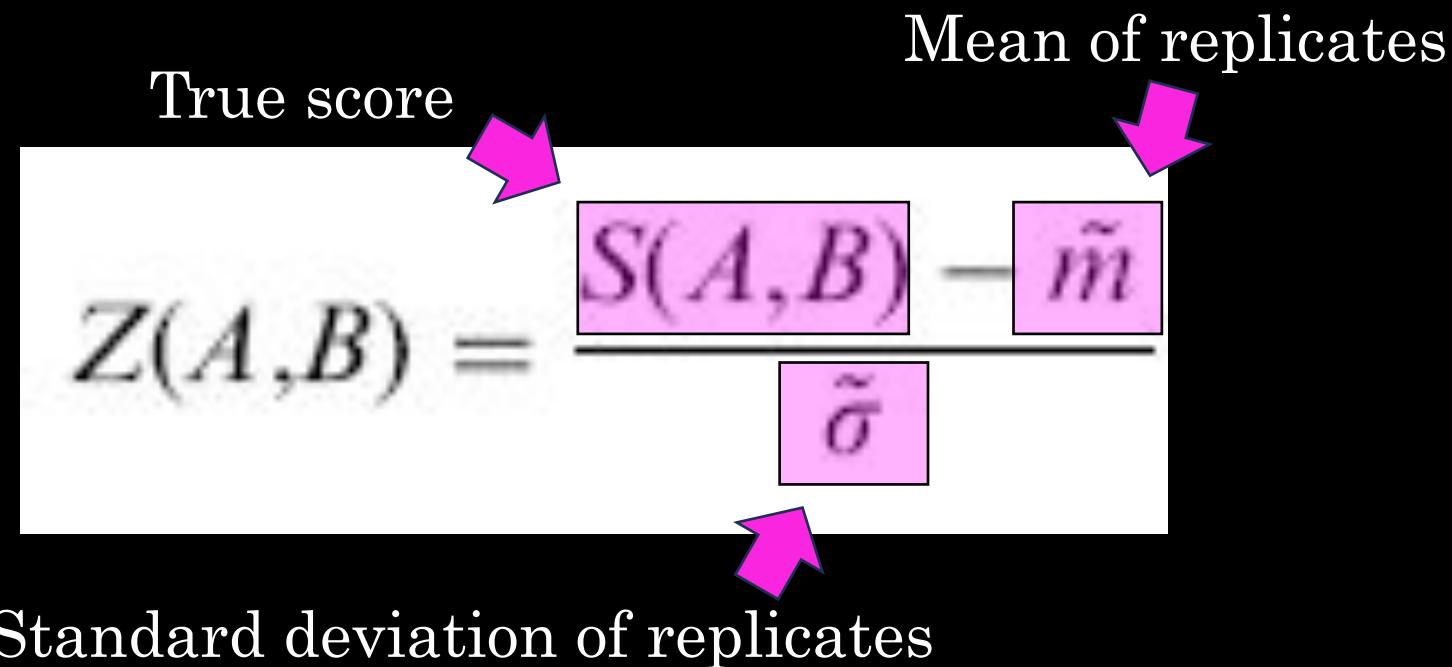
Compute **Z-score** for each replicate:

$$Z(A,B) = \frac{S(A,B) - \tilde{m}}{\tilde{\sigma}}$$

True score

Mean of replicates

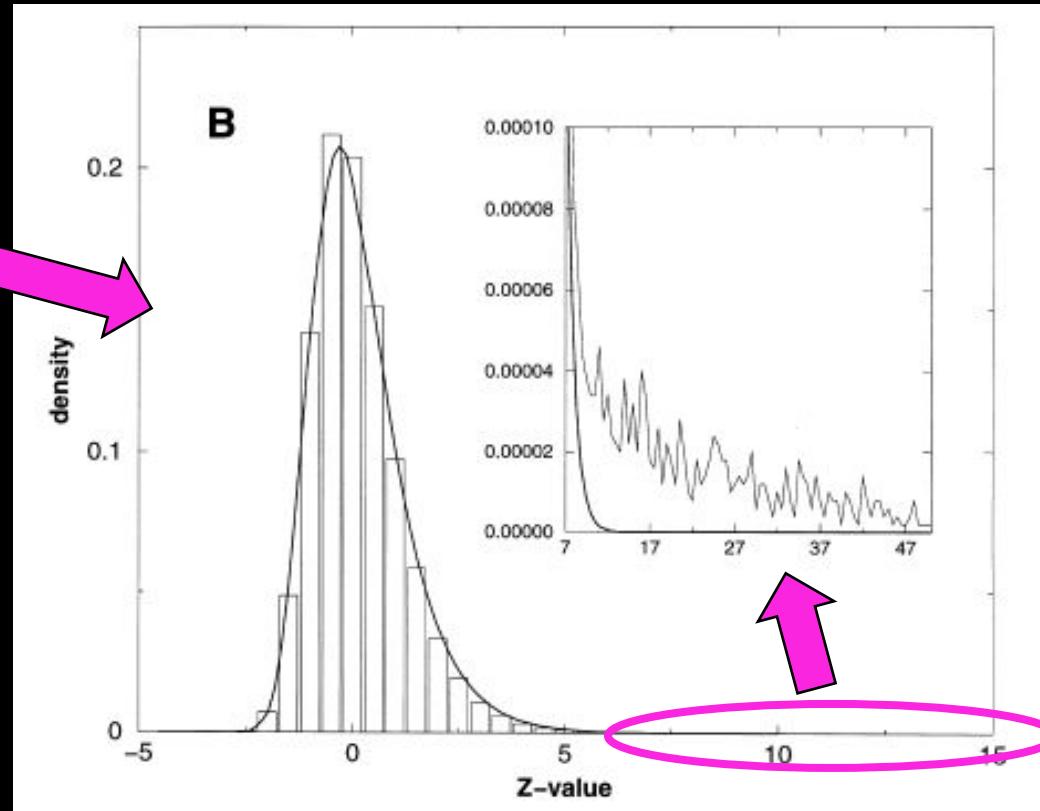
Standard deviation of replicates



Significance of S-W Alignments

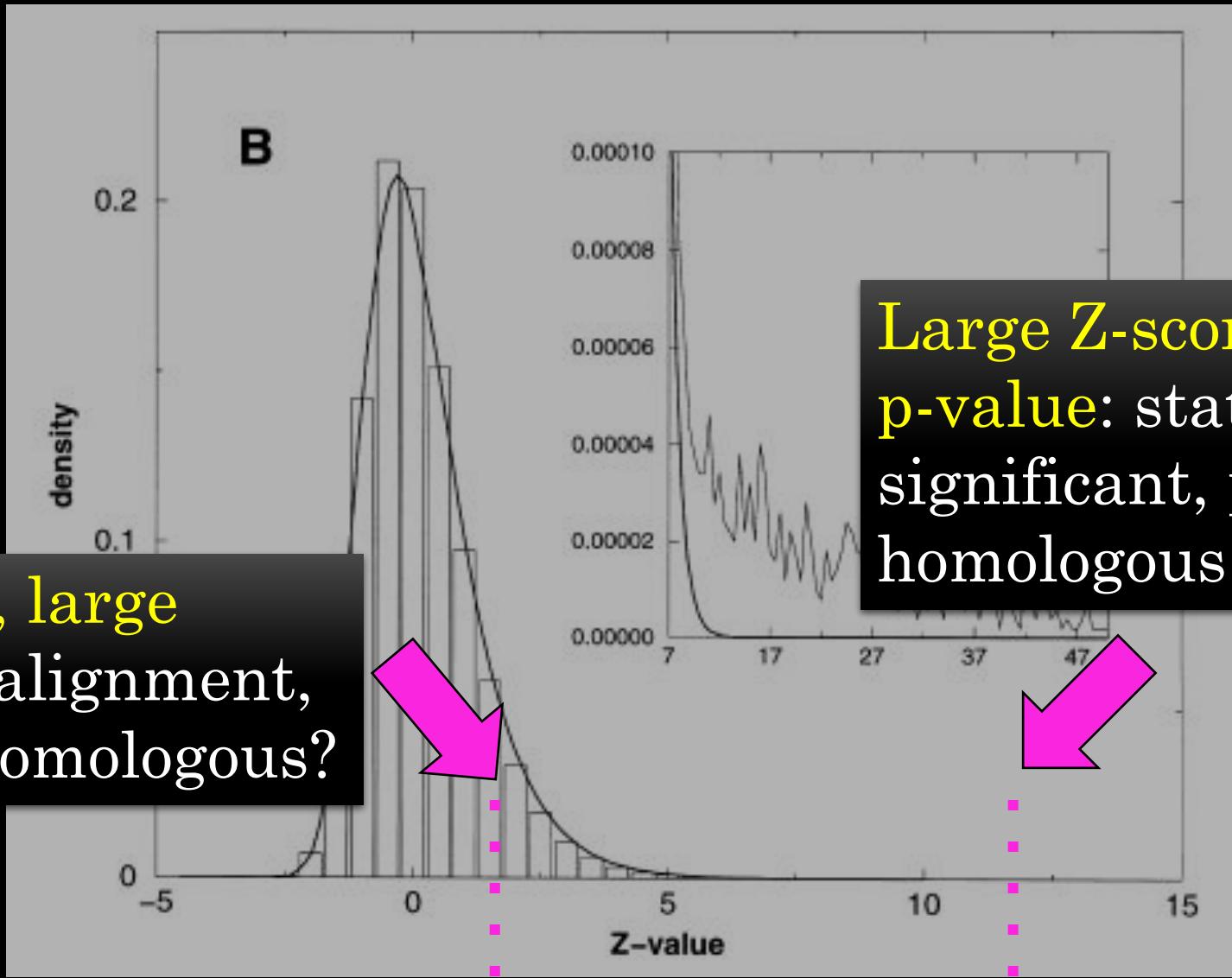
$$Z(A,B) = \frac{S(A,B) - \tilde{m}}{\tilde{\sigma}}$$

Curve = null model
of Z-score fit to
Gumbel
extreme value
distribution



Statistically “significant”
alignments (small p-value)

Alignment Significance

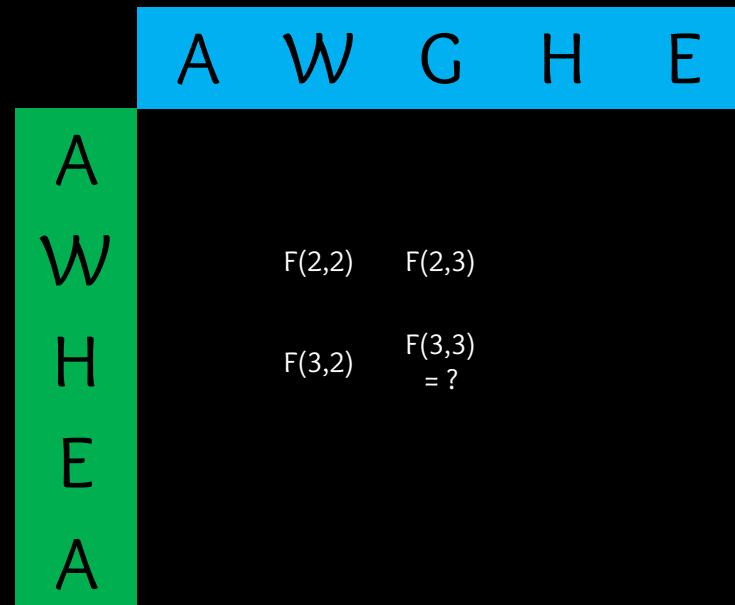


Small Z-score, large p-value: poor alignment, possibly not homologous?

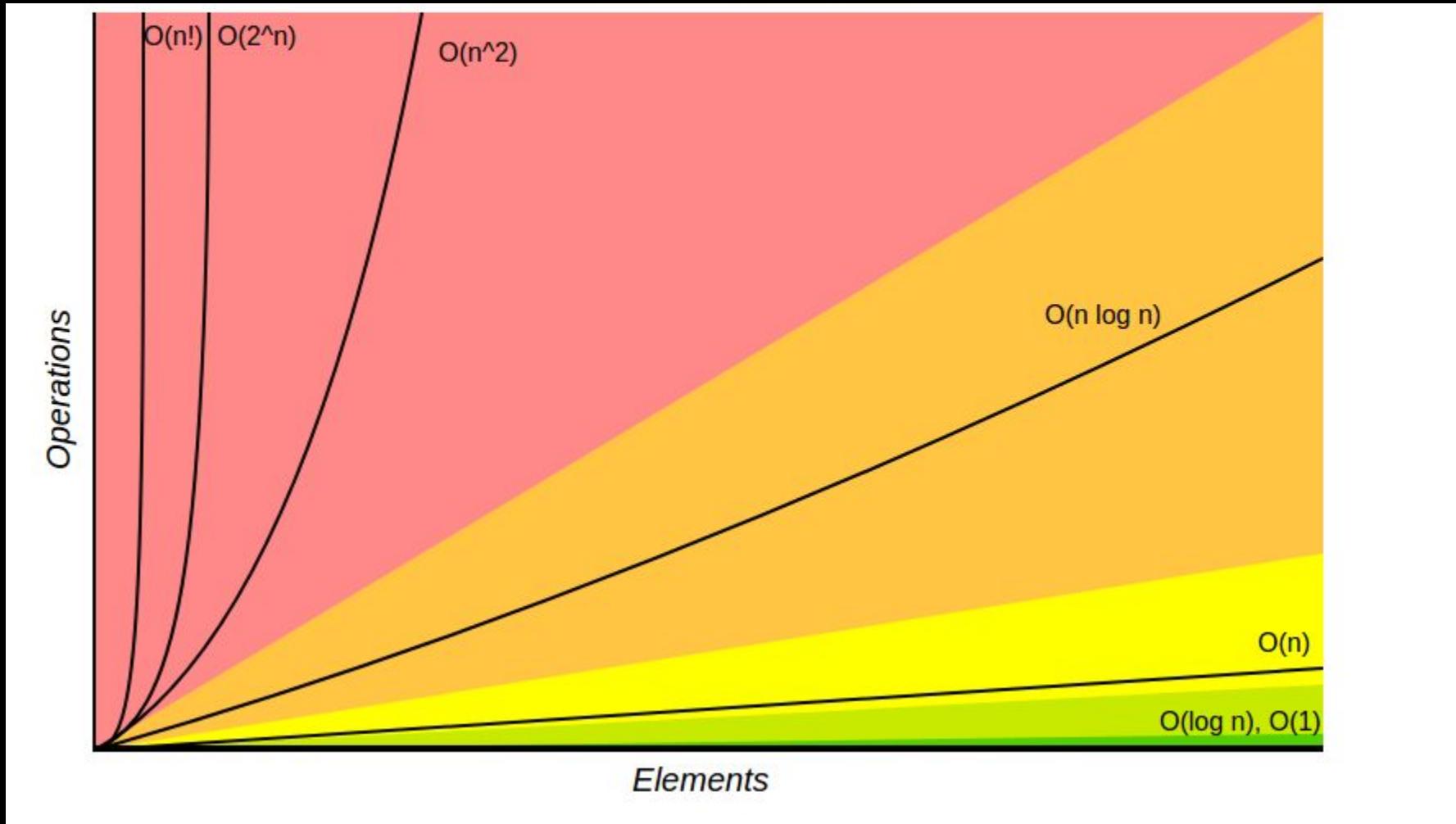
Large Z-score, small p-value: statistically significant, probably homologous

Alignment Complexity

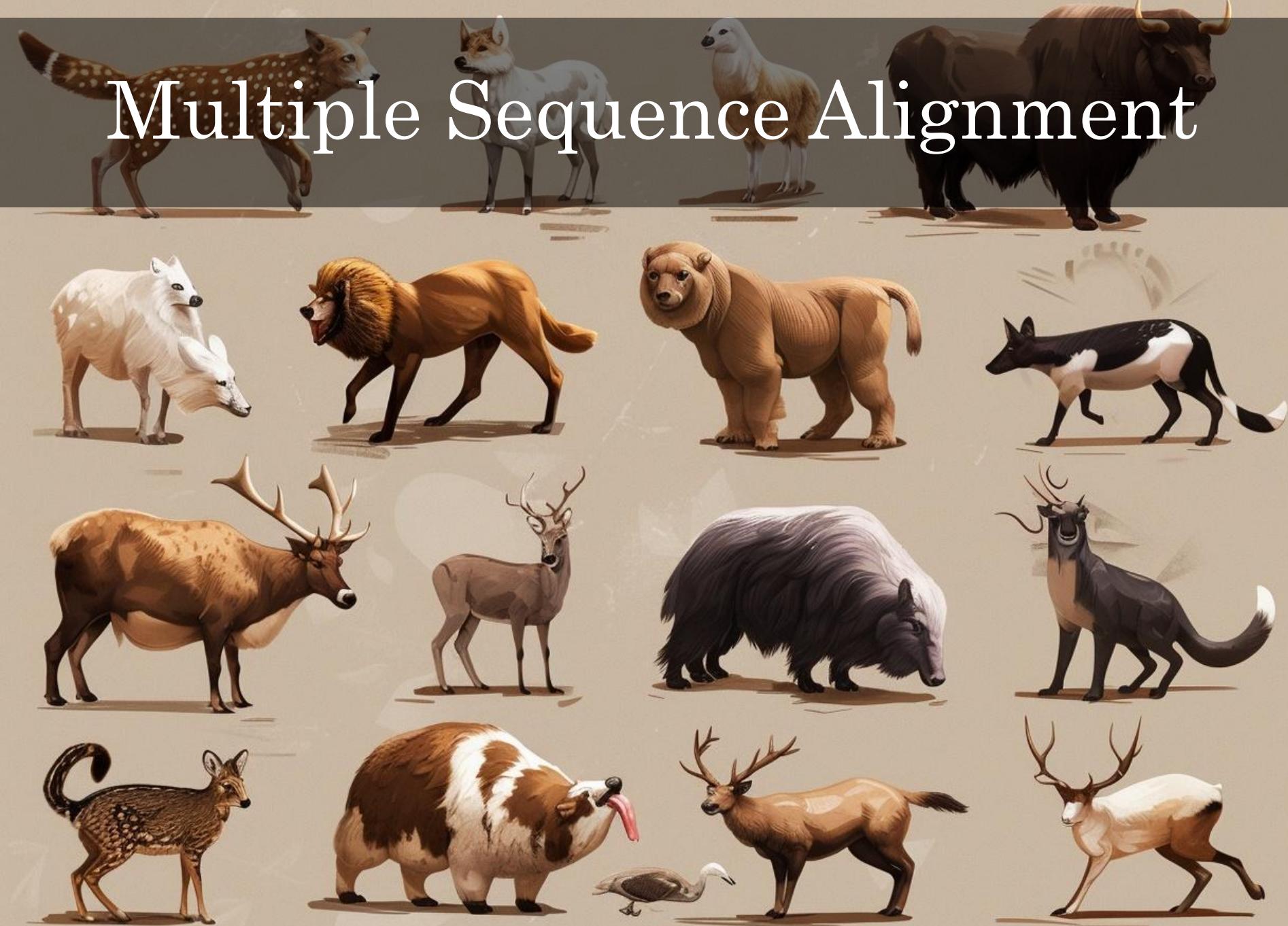
- For each possible matching of a residue from sequence S_1 with a residue from S_2 , we need to carry out a constant number of computations and comparisons
- Total = $3 \times m \times n = O(mn)$
- $\sim O(n^2)$ if we assume $m \approx n$
- Quadratic scaling!



Big O complexity

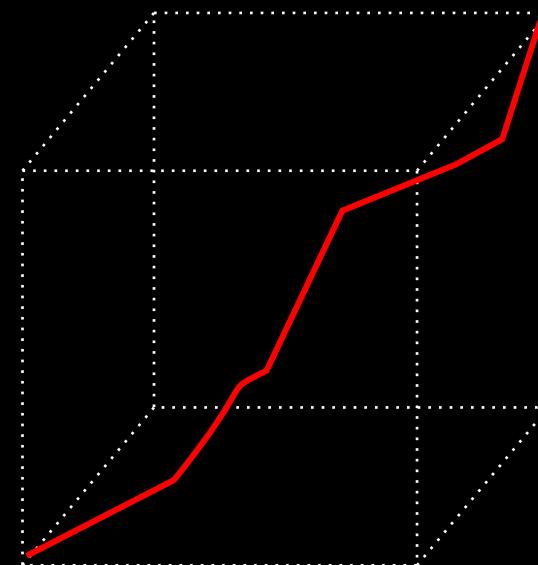


Multiple Sequence Alignment



Multiple Sequence Alignment

- Dynamic programming on k sequences, each of length n requires construction of a k -dimensional matrix with n^k entries
- $= O(n^k)$
- Therefore **exponential** in the number of sequences!



Scoring MSAs

- In pairwise alignment, we are optimizing the score between two sequences
- When aligning 3 or more sequences, instead optimize the **sum of pairs** score:

Sequence 1	N
Sequence 2	Q
Sequence 3	Q
Sequence 4	D

$$SP(N, Q, Q, D) = S(N, Q) + S(N, Q) + S(N, D) + S(Q, Q) + S(Q, D) + S(Q, D)$$

A Key Principle of MSAs

- Aligning everything at once using exact DP = n^k :
BAD
- Aligning pairs of sequences using exact DP, then
doing something with this information = $\binom{k}{2}(n^2)$:
acceptable

An Important Observation

The best alignment between a **pair** of sequences
may not appear in the optimal **multiple** alignment



And

- The score of the optimal multiple alignment $S(a)$ can be no greater than the sum of optimal pairwise alignments $S(\hat{a}^{kl})$

$$\sum_{k < l} S(a^{kl}) \leq \sum_{k < l} S(\hat{a}^{kl})$$

- In general, the multiple alignment score will be less than the sum of all pairwise alignments

But how much less???

MSA (Carrillo and Lipman, 1988)

- If we can establish a lower bound σ on the multiple alignment score, then we constrain each $S(a^{kl})$:

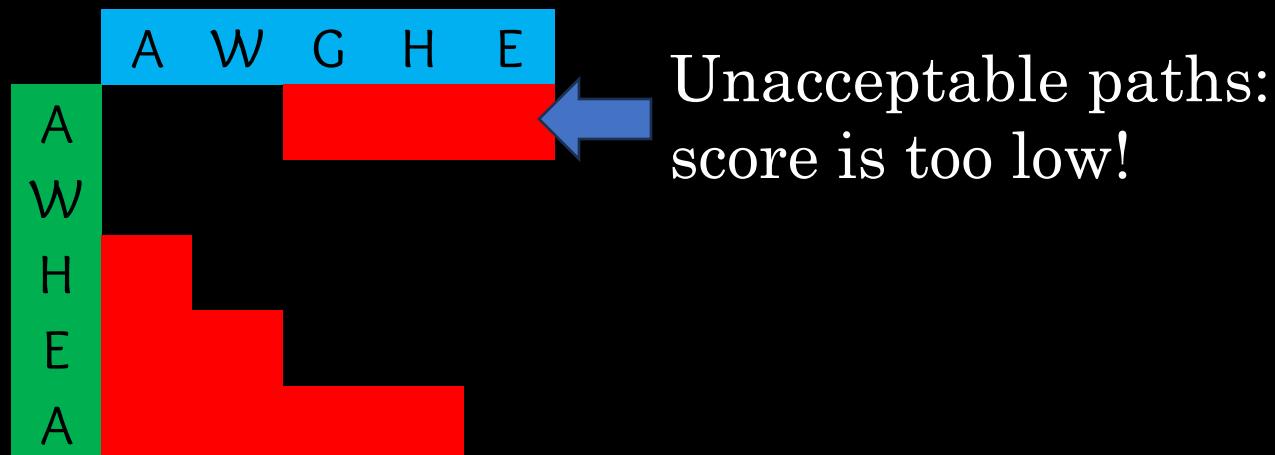
$$S(\hat{a}^{kl}) - S(a^{kl}) \leq \sum_{k' < l'} S(\hat{a}^{k'l'}) - \sigma$$

Remember: sum of all best possible pairwise alignments!

σ high: $S(a^{kl})$ must be close to $S(\hat{a}^{kl})$
Sets a **bound** on “how much less”

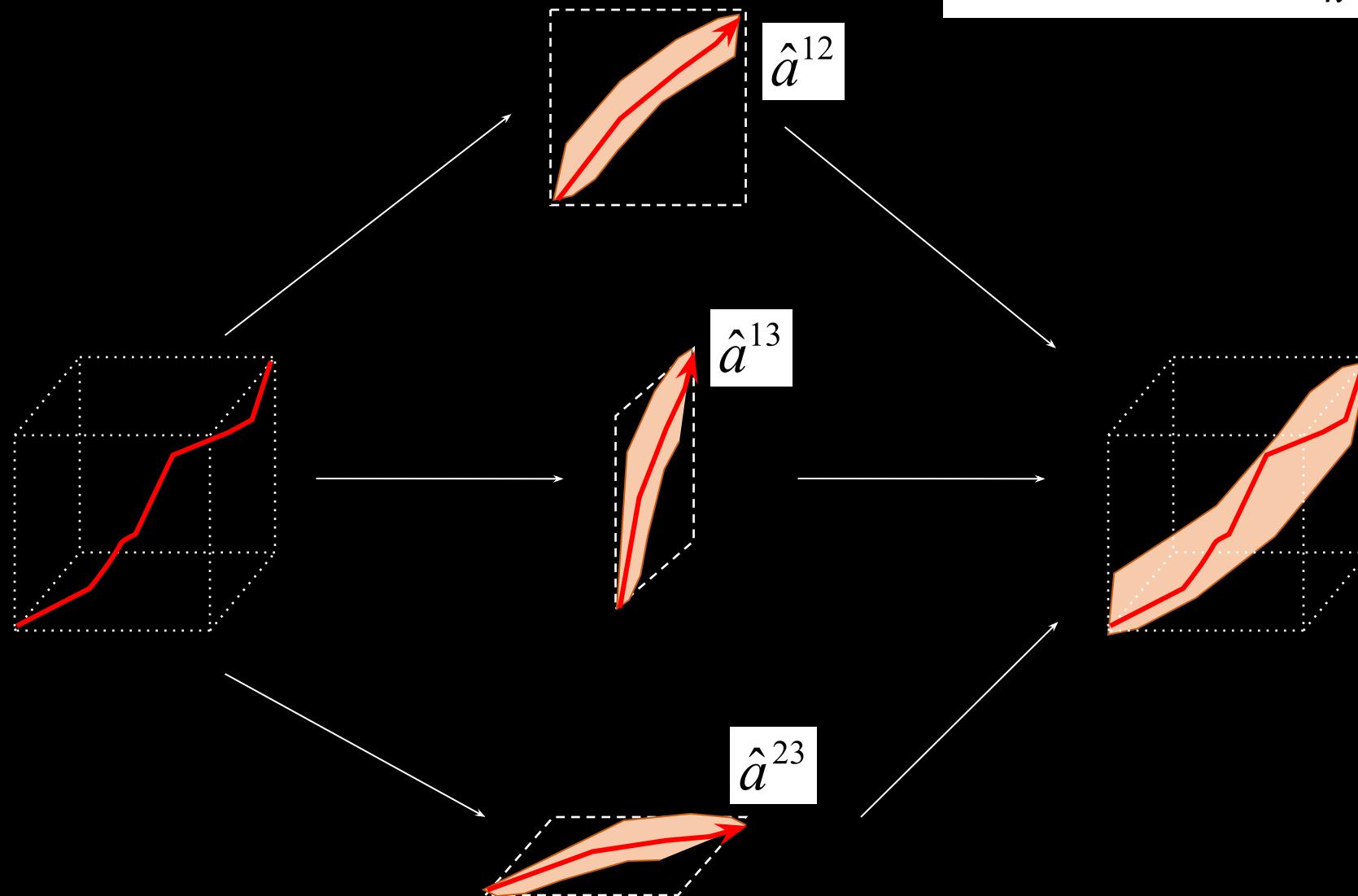
The Consequence of σ

- We can compute $S(\hat{a}^{k'l'})$ for each **pair** of sequences, and fill the DP grid
- Any cell of the DP grid that gives $S(a^{kl})$ less than σ can be **discarded**



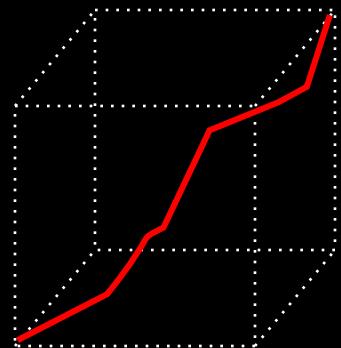
Constrain each pairwise alignment to score no less than

$$\sigma + S(\hat{a}^{kl}) - \sum_{k' < l'} S(\hat{a}^{k'l'})$$



The Last Step

- Multidimensional dynamic programming, restricted to “acceptable” band



- Still $O(n^k)$, but hopefully faster!

So we need all optimal pairwise alignments (again, way cheaper than naïve MSA)

We also need σ . How can we find it?

σ too **large**: we don't effectively constrain the search space!

σ too **small**: we may not find an optimal alignment!

Summary

- Dynamic programming allows the calculation of optimal pairwise alignments (for a given scoring scheme!)
- As soon as we go from 2 to >2 sequences, the exponential time complexity of the algorithm makes it impractical
- Need heuristics!